A Variable-Density Fictitious-Domain Method for Fully Resolved Simulation of High-Density Ratio Fluid-Particle Systems
نویسندگان
چکیده
A numerical scheme for fully resolved simulation of fluid-particle systems with freely moving rigid particles is developed. The approach is based on a fictitious domain method wherein the entire fluid-particle domain is assumed to be an incompressible fluid but with variable density. The flow inside the particle domain is constrained to be a rigid body motion using an additional rigidity constraint in a fractional step scheme. The rigidity constraint force is obtained based on the fast computation technique proposed by Sharma and Patankar (2005). The particle is assumed to be made up of material points moving on a fixed background mesh where the fluid flow equations are solved. The basic finite-volume solver is based on a co-located grid incompressible but variable density flow. The incompressibility constraint is imposed by solving a variable-coefficient pressure equation giving rise to a stable scheme for high density ratio fluid-particle systems. Through various verification and validation test cases on fixed and freely moving particles it is shown that the numerical approach is accurate and stable for a wide range of fluid-particle density ratios.
منابع مشابه
A variable-density fictitious domain method for particulate flows with broad range of particle-fluid density ratios
A numerical scheme for fully resolved simulation of fluid-particle systems with freely moving rigid particles is developed. The approach is based on a fictitious domain method wherein the entire fluid-particle domain is assumed to be an incompressible fluid but with variable density. The flow inside the particle domain is constrained to be a rigid body motion using an additional rigidity constr...
متن کاملA numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows
A fictitious-domain based formulation for fully resolved simulations of arbitrary shaped, freely moving rigid particles in unsteady flows is presented. The entire fluid-particle domain is assumed to be an incompressible, but variable density, fluid. The numerical method is based on a finite-volume approach on a co-located, Cartesian grid together with a fractional step method for variable densi...
متن کاملA new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows
A Lagrange-multiplier-based fictitious-domain method (DLM) for the direct numerical simulation of rigid particulate flows in a Newtonian fluid was presented by Glowinski, Pan, Hesla and Joseph (1999). An important feature of this finite element based method is that the flow in the particle domain is constrained to be a rigid body motion by using a well-chosen field of Lagrange multipliers. The ...
متن کاملParallel Open Source Cfd-dem for Resolved Particle-fluid Interaction
In the following paper we present a parallelized resolved method for the simulation of the dynamics of immersed bodies within fluids. The algorithm uses the so called Fictitious Domain Method (FDM) and combines the Lagrangian Discrete Element Method (DEM) for the tracking of the bodies and a Computational Fluid Dynamics (CFD) method for the calculation of the flow and pressure field of the flui...
متن کاملComputational simulation of the interactions between moving rigid bodies and incompressible two-fluid flows
We present a two-dimensional computational flow solver for simulation of two-way interactions between moving rigid bodies and two-fluid flows. The fluids are assumed to be incompressible and immiscible. The two-step projection method along with Graphics Processing Unit (GPU) acceleration is employed to solve the flow equations. The fluid-solid interaction is captured by using the fictitious dom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010